Najnovejše

 corpus 
corpus
Opis:
This comparable corpus collection consists of Wikipedia dumps of the Bosnian, Croatian, Macedonian, Montenegrin, Serbian, Serbo-Croatian and Slovenian Wikipedia, harvested on October 17th 2020. The text was extracted from ...
 Ta vnos vsebuje 7 datotek(e) (5.04 GB).
 
Publicly Available Distributed under Creative Commons Attribution Required
 toolService 
toolService
Opis:
The Orange Workflow for Observing Collocation Clusters ColEmbed 1.0 ColEmbed is a workflow (.OWS file) for Orange Data Mining (an open-source machine learning and data visualization software: https://orangedatamining.com/) ...
 Ta vnos vsebuje 1 datoteko (86.32 MB).
 
Publicly Available
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
SLONEST stands for Slovene Ontologies of Semantic Types. The first subset – SLONEST-noun 1.0 – represents an ontology developed for nouns. SLONEST-noun contains an XML file with a total of 271 categories of semantic types: ...
 Ta vnos vsebuje 1 datoteko (58.7 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike

Največ ogledov

V preteklem tednu
 corpus 
corpus
Opis:
DGT-UD is a 2 billion word 23-language parallel syntactically parsed corpus, which consists of the JRC DGT translation memory of European law, automatically annotated with UD-Pipe 1.2 (http://ufal.mff.cuni.cz/udpipe) using ...
 Ta vnos vsebuje 24 datotek(e) (24.42 GB).
 
Publicly Available Distributed under Creative Commons Attribution Required
 lexicalConceptualResource 
lexicalConceptualResource
Avtor(ji):
Opis:
hrLex is a large inflectional lexicon of Croatian language where each entry consists of a (wordform, lemma, MSD, MSD features, UPOS, morphological features, frequency, per-million frequency) 8-tuple. The (wordform, lemma, ...
 Ta vnos vsebuje 1 datoteko (51.95 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
A lexicon of 751 emoji characters with automatically assigned sentiment. The sentiment is computed from 70,000 tweets, labeled by 83 human annotators in 13 European languages. The process and analysis of emoji sentiment ...
 Ta vnos vsebuje 3 datotek(e) (93.95 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike