Najnovejše

 corpus 
corpus
Opis:
The ccŠolar corpus contains 1693 texts collected during 2016-2018, as part of the upgrade of the corpus Šolar project. The project aims were to increase the size of the Šolar 1.0 corpus and to improve text balance across ...
 Ta vnos vsebuje 1 datoteko (5.83 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required
 corpus 
corpus
Opis:
The siParl corpus contains minutes of the Assembly of the Republic of Slovenia for 11th legislative period 1990-1992, minutes of the National Assembly of the Republic of Slovenia from the 1st to the 7th legislative period ...
 Ta vnos vsebuje 3 datotek(e) (2.64 GB).
 
Publicly Available Distributed under Creative Commons Attribution Required
 lexicalConceptualResource 
lexicalConceptualResource
Avtor(ji):
Opis:
srLex is a large inflectional lexicon of Serbian language where each entry consists of a (wordform, lemma, MSD, MSD features, UPOS, morphological features, frequency, per-million frequency) 8-tuple. The (wordform, lemma, ...
 Ta vnos vsebuje 1 datoteko (54.16 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike

Največ ogledov

V preteklem tednu
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
srLex is a large inflectional lexicon of Serbian language where each entry consists of a (wordform, lemma, MSD, frequency, per-million frequency) 5-tuple. The (wordform, lemma, MSD) triple frequencies are calculated on the ...
 Ta vnos vsebuje 1 datoteko (29.54 MB).
 
Publicly Available
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
The MULTEXT-East morphosyntactic lexicons have a simple structure, where each line is a lexical entry with three tab-separated fields: (1) the word-form, the inflected form of the word; (2) the lemma, the base-form of the ...
 Ta vnos vsebuje 6 datotek(e) (12.05 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Noncommercial
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
A lexicon of 751 emoji characters with automatically assigned sentiment. The sentiment is computed from 70,000 tweets, labeled by 83 human annotators in 13 European languages. The process and analysis of emoji sentiment ...
 Ta vnos vsebuje 3 datotek(e) (93.95 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike