Najnovejše

 toolService 
toolService
Opis:
The model for lemmatisation of standard Slovenian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the ssj500k training corpus (http://hdl.handle.net/11356/1210) ...
 Ta vnos vsebuje 1 datoteko (37.04 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 corpus 
corpus
Opis:
A hand-labeled training (50,000 tweets labeled twice) and evaluation set (10,000 tweets labeled twice) for hate speech on Slovenian Twitter. The data files contain tweet IDs, hate speech type, hate speech target, and ...
 Ta vnos vsebuje 4 datotek(e) (5.19 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 corpus 
corpus
Avtor(ji):
Opis:
The COPA-HR dataset (Choice of plausible alternatives in Croatian) is a translation of the English COPA dataset (https://people.ict.usc.edu/~gordon/copa.html) by following the XCOPA dataset translation methodology ...
 Ta vnos vsebuje 3 datotek(e) (194.2 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike

Največ ogledov

V preteklem tednu
 corpus 
corpus
Avtor(ji):
Opis:
The corpus contains 256,567 documents from the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. These portals contain political, business, economic and financial content. The submission contains 7 files: ...
 Ta vnos vsebuje 8 datotek(e) (616.88 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 corpus 
corpus
Opis:
Janes-Forum is an annotated corpus of Slovene forums from websites med.over.net, avtomobilizem.com, and kvarkadabra.net from the period 2001-02 to 2015-01. The corpus is structured into forums, threads and posts, together ...
 Ta vnos vsebuje 2 datotek(e) (573.23 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
A lexicon of 751 emoji characters with automatically assigned sentiment. The sentiment is computed from 70,000 tweets, labeled by 83 human annotators in 13 European languages. The process and analysis of emoji sentiment ...
 Ta vnos vsebuje 3 datotek(e) (93.95 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike