Najnovejše

 toolService 
toolService
Opis:
The model for lemmatisation of non-standard Serbian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the SETimes.SR training corpus (http://hdl.handle.net/11356/1200), ...
 Ta vnos vsebuje 1 datoteko (850.72 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 toolService 
toolService
Opis:
The model for lemmatisation of non-standard Croatian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the hr500k training corpus (http://hdl.handle.net/11356/1210), ...
 Ta vnos vsebuje 1 datoteko (789.52 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 toolService 
toolService
Opis:
This model for morphosyntactic annotation of non-standard Croatian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the hr500k training corpus (http://hdl.handl ...
 Ta vnos vsebuje 2 datotek(e) (1.12 GB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike

Največ ogledov

V preteklem tednu
 corpus 
corpus
Opis:
The ParlaMeter-sl corpus contains minutes of the National Assembly of the Republic of Slovenia and currently covers its VIIth mandate (2014-08-01 to 2018-06-22). The corpus contains speaker metadata (gender, age, education, ...
 Ta vnos vsebuje 2 datotek(e) (423.98 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
A lexicon of 751 emoji characters with automatically assigned sentiment. The sentiment is computed from 70,000 tweets, labeled by 83 human annotators in 13 European languages. The process and analysis of emoji sentiment ...
 Ta vnos vsebuje 3 datotek(e) (93.95 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 languageDescription 
languageDescription
Avtor(ji):
Opis:
ELMo language model (https://github.com/allenai/bilm-tf) used to produce contextual word embeddings, trained on entire Gigafida 2.0 corpus (https://viri.cjvt.si/gigafida/System/Impressum) for 10 epochs. 1,364,064 most ...
 Ta vnos vsebuje 2 datotek(e) (212.96 MB).
 
Publicly Available