Najnovejše

 toolService 
toolService
Opis:
The model for lemmatisation of non-standard Serbian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the SETimes.SR training corpus (http://hdl.handle.net/11356/1200), ...
 Ta vnos vsebuje 1 datoteko (850.72 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 toolService 
toolService
Opis:
The model for lemmatisation of non-standard Croatian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the hr500k training corpus (http://hdl.handle.net/11356/1210), ...
 Ta vnos vsebuje 1 datoteko (789.52 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 toolService 
toolService
Opis:
This model for morphosyntactic annotation of non-standard Croatian was built with the CLASSLA-StanfordNLP tool (https://github.com/clarinsi/classla-stanfordnlp) by training on the hr500k training corpus (http://hdl.handl ...
 Ta vnos vsebuje 2 datotek(e) (1.12 GB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike

Največ ogledov

V preteklem tednu
 corpus 
corpus
Opis:
The ParlaMeter-sl corpus contains minutes of the National Assembly of the Republic of Slovenia and currently covers its VIIth mandate (2014-08-01 to 2018-06-22). The corpus contains speaker metadata (gender, age, education, ...
 Ta vnos vsebuje 2 datotek(e) (423.98 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 corpus 
corpus
Avtor(ji):
Opis:
The corpus contains 256,567 documents from the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. These portals contain political, business, economic and financial content. The submission contains 7 files: ...
 Ta vnos vsebuje 8 datotek(e) (616.88 MB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike
 lexicalConceptualResource 
lexicalConceptualResource
Opis:
A lexicon of 751 emoji characters with automatically assigned sentiment. The sentiment is computed from 70,000 tweets, labeled by 83 human annotators in 13 European languages. The process and analysis of emoji sentiment ...
 Ta vnos vsebuje 3 datotek(e) (93.95 KB).
 
Publicly Available Distributed under Creative Commons Attribution Required Share Alike