Prikaži enostavni zapis vnosa

 
dc.contributor.author Kadunc, Klemen
dc.contributor.author Robnik-Šikonja, Marko
dc.date.accessioned 2017-05-28T08:41:45Z
dc.date.available 2017-05-28T08:41:45Z
dc.date.issued 2017-05-28
dc.identifier.uri http://hdl.handle.net/11356/1115
dc.description The corpus of web commentaries with sentiment categorizations was developed as a part of BSc Thesis (Kadunc, 2016) and served for evaluation of the Slovene Sentiment Lexicon KSS http://hdl.handle.net/11356/1097. It contains web commentaries about different topics (business, politics, sport, and other) from 4 Slovene web portals (RtvSlo, 24ur, Finance, Reporter). The corpus is in XML format and available in two forms: - original corpus, containing 4,777 commentaries, 898 positive, 3,291 negative and 588 neutral commentaries. - balanced corpus, a subset of the original corpus, containing 1,740 commentaries, 580 of each type of sentiment (positive, negative and neutral). References: Klemen Kadunc (2016). Določanje sentimenta slovenskim spletnim komentarjem s pomočjo strojnega učenja. Diplomsko delo. Univerza v Ljubljani, Fakulteta za računalništvo in informatiko (in Slovene). http://eprints.fri.uni-lj.si/3317/ Klemen Kadunc, Marko Robnik-Šikonja (2016). Analiza mnenj s pomočjo strojnega učenja in slovenskega leksikona sentimenta. Conference on Language Technologies & Digital Humanities, Ljubljana (in Slovene). http://www.sdjt.si/wp/dogodki/konference/jtdh-2016/zbornik/
dc.language.iso slv
dc.publisher Faculty of Computer and Information Science, University of Ljubljana
dc.rights Creative Commons - Attribution 4.0 International (CC BY 4.0)
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.label PUB
dc.subject web commentaries
dc.subject opinion corpus
dc.subject sentiment analysis
dc.title Opinion corpus of Slovene web commentaries KKS 1.001
dc.type corpus
metashare.ResourceInfo#ContentInfo.mediaType text
has.files yes
branding CLARIN.SI data & tools
contact.person Marko Robnik-Šikonja marko.robnik@fri.uni-lj.si Faculty of Computer and Information Science, University of Ljubljana
size.info 4777 texts
files.count 4
files.size 5999728


 Datoteke v tem vnosu

 Prenesi vse datoteke v vnosu (5.72 MB)
To je vnos
Publicly Available
z licenco:
Creative Commons - Attribution 4.0 International (CC BY 4.0)
Distributed under Creative Commons Attribution Required
Icon
Ime
klxSAcorpus_20160224_1001.zip
Velikost
945.11 KB
Format
application/zip
Opis
original opinion corpus
MD5
364dd759dce464a61e7781af13cb05c9
 Prenesi datoteko  Predogled
 Predogled datoteke  
Icon
Ime
klxSAcorpus_20160224_1001bal.zip
Velikost
320.58 KB
Format
application/zip
Opis
balanced opinion corpus
MD5
889db73945acd790ddb2dfb4235e920d
 Prenesi datoteko  Predogled
 Predogled datoteke  
Icon
Ime
JTDH-2016_Kadunc_Robnik-Sikonja_Analiza-mnenj-s-pomocjo-strojnega-ucenja.pdf
Velikost
886.08 KB
Format
PDF
Opis
Kadunc & Robnik-Šikonja, 2016
MD5
7da35d9a76c948938352ecca241f16be
 Prenesi datoteko
Icon
Ime
UL_FRI_diploma_2016-KLEMEN_KADUNC-Dolocanje_sentimenta_slovenskim_spletnim_komentarjem_s_pomocjo_strojnega_ucenja.pdf
Velikost
3.62 MB
Format
PDF
Opis
Kadunc, 2016, BSc thesis
MD5
c574dd44fa4fcddd8a7a8491013ba59c
 Prenesi datoteko

Prikaži enostavni zapis vnosa